Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	A chiral molecule is non-superimposable on its mirror image / 3D molecule with no plane of symmetry (1)	just 'non- superimposable' just 'no plane of symmetry'	3
	2-hydroxypropanoic acid has a carbon atom which is asymmetric / has four different groups attached (1)	Molecules for groups	
	Middle carbon labelled in any clear way (1) e.g. H OH O _* H OH H H H H		
	ALLOW asymmetric C described but not labelled		
	IGNORE references to rotation of plane polarized light		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	2-hydroxypropanoic acid formed in muscles is a single (allow pure) enantiomer /(optical) isomer ALLOW Unequal mixture of enantiomers /(optical) isomers (1)	Just "not a racemic mixture"	2
	2-hydroxypropanoic acid formed in milk is a racemic mixture / equimolar mixture of the two enantiomers / racemate (1) If milk and muscles are reversed but the rest is correct, one mark is awarded	Just 'a mixture of enantiomers'	

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)i)	Firstep NaOH(aq) / KOH(aq) or names(1)	OH⁻ / alkali	2
	Second mark dependent on first being correct		
	Second step HCI(aq) / hydrochloric acid / $H_2SO_4(aq)$ / sulfuric acid	H ⁺ / H ₃ O ⁺ /acid	
	ALLOW HNO ₃ / nitric acid /dil HCl /(dil) H ₂ SO4 /(dil) HNO ₃ or any strong acid (name or formula) including HBr((aq)) and HI((aq)) (1)		
	IGNORE Omission of (aq) and references to temperature Ethanolic /alcoholic solutions		
	ALLOW One mark for correct two reagents in the wrong order One mark for 'alkali / OH ⁻ followed by acid / H ⁺ /H ₃ O ⁺ '		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(ii)i	irst mark (Stand alone)		3
	A racemic mixture is not formed		
	OR		
	More of one enantiomer / (optical) isomer is formed		
	OR		
	Only one enantiomer /(optical) isomer is formed (1)		
	Second mark (Stand alone)		
	(Some of the) reaction is $S_N 2$ (1)		
	Third mark (Stand alone)		
	Nucleophile / OH ⁻ only attacks from one side of the molecule / from the opposite side to leaving group (1)	Carbocation (for molecule)	
	Use of 'intermediate' for 'transition state' in		
	description of $S_N 2$		
	Reverse argument based on $S_N 1$ forming a racemic mixture		

Question	Acceptable Answers	Reject	Mark
1(c)(i)	Nucleophilic (1)		2
	Addition (1)	$S_N 1/S_N 2$	

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	Cyanide (ion) / CN ⁻ /C≡N ⁻ / :C≡N ⁻ / ⁻ CN	HC C≡N	1

Question Number	Acceptable Answers	Reject	Mark
1 (c) (i	$H \xrightarrow{C} C \xrightarrow{C} H \xrightarrow{H} O \xrightarrow{C} H \xrightarrow{H} O \xrightarrow{C} H \xrightarrow{H} O \xrightarrow{C} H \xrightarrow{H} O \xrightarrow{C} O \xrightarrow{H} O \xrightarrow{C} H \xrightarrow{H} O \xrightarrow{C} O \xrightarrow{C} O \xrightarrow{H} O \xrightarrow{C} $	Omission of charges (penalise once only)	2
	Both curly arrows (1)	Full charges on ethanal	
	Intermediate (1) ALLOW Omission of lone pair Curly arrow from anywhere on nucleophile including from charge or nitrogen Formation of charged canonical form followed by attack of cyanide ion	—C—NC in intermediate	
	IGNORE $\delta + \delta$ - even if unbalanced		

Question Number	Acceptable Answers	Reject	Mark
1 (c))	Racemic mixture / equal amounts of the two enantiomers / racemate formed(1)Stand alone mark		3
	CHO / aldehyde group is (trigonal) planar (1) ALLOW ethanal / molecule is (trigonal) planar	Intermediate / carbonyl group /C_O is planar	
	Cyanide (ion) / CN ⁻ /nucleophile attacks (equally) from above or below / either side (of the molecule) (1)	two positions Intermediate	
	Penalise use of intermediate / ion for aldehyde group once only		
	Third mark cannot be awarded if the reaction is described as a nucleophilic substitution		

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	Any value /range within the range 3750—2500 cm ⁻¹ due to O—H / OH / —OH	Wavenumbers alone OH in alcohol	1
	IGNORE COOH / CO ₂ H / carboxylic acid		

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	These three marks are stand aloneQ is due to C=O(1)	(1) Carboxylic acid / COOH	
	The (C=O) aldehyde range is 1740–1720 cm ⁻¹ and (C=O) carboxylic acid range is 1725–1700 cm ⁻¹ (1	group	
	So the peaks / absorptions cannot be used to distinguish these two compounds because they overlap. OR The (broad) absorption Q covers both the aldehyde and the carboxylic acid ranges (1) ALLOW 'too close'/'quite similar' for 'overlap'	Just 'cannot be used to distinguish the compounds'	

Question	Acceptable Answers			Reject	Mark
Number					
1 (e)	If reagent incorrect, obs	serva	tion mark can only be		4
	awarded for a near miss	awarded for a near miss			
	Test nositive for ethana				
	Reagent (1)	' Obs	servation (1)		
	Tollens'	Silve	er mirror / black / grey	lodine in	
		ppt		alkali /	
	Fehling's / Benedict's	Red	-brown ppt	iodoform test	
	2,4-DNP(H) / Brady's	Orange / red / vellow ppt		Acidified	
	reagent	ALL	OW brick-red ppt	potassium	
				dichromate	
	Test positive for 2-hydro	oxypr	opanoic acid		
	Reagent	(1)	Observation (1)		
	PCI ₅ / Phosphorus		Steamy fumes*	Smoke	
	(V)chloride / phosphor	us	ALLOW gas evolved	Just 'tumes'	
	pentachloride		turns (blue) litmus /	Any indicator	
			UI red	as sole test	
	Named metal carbonat	e	Effervescence		
	(solution)		ALLOW gas / CO ₂	incorrect	
			evolved turns lime	formulae of	
	Sodium		Efformesconco	reagents	
	bydrogencarbonate		ALLOW das / CO.	U	
	(solution)		evolved turns lime		
			water cloudy		
	Magnesium (& water)		Effervescence		
	Ethanol & H ₂ SO₄/name	d	Sweet / fruity / pear		
	strong acid		drops / glue smell		
	Ethanoic acid &		Sweet / fruity / pear		
	H ₂ SO ₄ /named strong a	cid	drops / glue smell		
	ALLOW				
	Na and effervescence /	gas e	evolved pops with a		
	lighted splint for2-hydro	oxypr	opanoic acid		
	(2)				
	fizzina / hubblina for eff				
	IGNORE				
	names of product				
	•				
	IF two tests given for one substance both must be				
	correct for full marks				
	*misty fumos / white fu	mos	/ gas for fumos		
	inisty runnes / white lu	IIIG2	yas iui iuines		